Sekolah Kita

Sekolah Kita

Kamis, 28 Januari 2010

Energi pada Gerak Harmonik Sederhana

Energi pada Gerak Harmonik Sederhana

Pada Gerak Harmonik Sederhana, gaya yang bekerja pada benda dan pegas tidak tetap alias selalu berubah-ubah. Oleh karenanya, lebih mudah jika kita menggunakan pendekatan energi. Untuk menekan atau meregangkan pegas, kita memberikan energi pada pegas tersebut. Energi yang disimpan pada pegas yang tertekan atau teregang merupakan energi potensial. Ketika pegas yang kita tekan atau kita regangkan dilepaskan, maka energi potensial pegas berubah menjadi energi kinetik. Demikian juga pada ayunan sederhana. Ketika benda yang digantungkan pada seutas tali kita simpangkan sampai jarak tertentu dari posisi setimbangnya, pada benda tersebut terdapat Energi Potensial. Jika ayunan dilepaskan sehingga benda bergerak, Energi Potensial akan berubah menjadi energi kinetik. Jadi benda yang bergerak harmonik memiliki energi potensial dan energi kinetik. Jumlah total energi potensial dan energi kinetik adalah energi mekanik. Sekarang mari kita tinjau energi pada pegas dan ayunan sederhana.

Energi Potensial pada Pegas

Untuk menghitung energi potensial pada pegas, terlebih dahulu kita hitung kerja alias usaha yang dibutuhkan untuk meregangkan pegas.

Persamaan Usaha adalah W = F s, di mana F adalah gaya dan s adalah perpindahan. Pada pegas, perpindahan adalah simpangan x. Ketika kita menekan atau meregangkan pegas sejauh x, dibutuhkan gaya Fa yang berbanding lurus dengan x. Secara matematis ditulis Fa = kx. Ketika ditekan atau diregangkan, pegas memberikan gaya dengan arah berlawanan (Fb) yang besarnya adalah Fb = -kx.

Untuk menghitung energi potensial dari pegas yang tertekan atau teregang, terlebih dahulu kita hitung usaha atau kerja yang dibutuhkan untuk merentangkannya. Kita tidak bisa menggunakan persamaan usaha W = Fx, karena gaya Fa baik ketika pegas diregangkan maupun ditekan selalu berubah-ubah sepanjang x. (amati gambar di atas). Oleh karena itu kita menggunakan gaya rata-rata. Gaya Fa berubah dari 0 ketika x=0 sampai bernilai kx ketika pegas diregangkan atau ditekan sejauh x.

Gaya rata-rata = F = ½ (0 + kx) = ½ kx. x adalah jarak maksimum pegas yang diregangkan atau ditekan. Usaha alias kerja yang dilakukan adalah :

W = Fa x = (1/2 kx) (x) = ½ kx2

Dengan demikian, nilai Energi Potensial elastis adalah :

EP elastis = ½ kx2

Energi Kinetik pada Pegas

Perlu anda ketahui bahwa Energi Potensial tidak mempunyai suatu persamaan umum yang mewakili semua jenis gerakan. Untuk EP elastis telah kita turunkan pada pembahasan di atas. Berbeda dengan EP, persamaan EK bersifat umum untuk semua jenis gerakan. Energi Kinetik dimiliki benda ketika bergerak.

Besar energi kinetik adalah :

EK = ½ mv2

m adalah massa benda dan v adalah kecepatan gerak benda.

Jumlah total Energi Kinetik dan Energi Potensial dari pegas adalah Energi Mekanik. Energi tersebut bernilai tetap alias kekal. Secara matematis ditulis :

EM = EP + EK

Sekarang, mari kita tinjau lebih mendalam hukum kekekalan energi mekanik pada pegas. Getaran pegas terdiri dari dua jenis, yakni getaran pegas yang diletakan secara horisontal dan getaran pegas yang digantungkan secara vertikal.

HUKUM KEKEKALAN ENERGI MEKANIK PADA PEGAS

Pegas yang diletakan horisontal

Misalnya kita letakan sebuah pegas di atas permukaan meja. Salah satu ujung pegas telah diikat pada dinding, sehingga pegas tidak bergeser ketika digerakan. Anggap saja permukaan meja sangat licin dan pegas yang kita gunakan adalah pegas ideal sehingga memenuhi hukum Hooke. Sekarang kita kaitkan sebuah benda pada salah satu ujung pegas.

Jika benda kita tarik ke kanan sehingga pegas teregang sejauh x, maka pada benda bekerja gaya pemulih pegas, yang arahnya berlawanan dengan arah tarikan kita. Ketika benda berada pada simpangan x, EP benda maksimum sedangkan EK benda nol (benda masih diam).

Ketika benda kita lepaskan, gaya pemulih pegas menggerakan benda ke kiri, kembali ke posisi setimbangnya. EP benda menjadi berkurang dan menjadi nol ketika benda berada pada posisi setimbangnya. Selama bergerak menuju posisi setimbang, EP berubah menjadi EK. Ketika benda tepat berada pada posisi setimbang (x = 0), gaya pemulih pegas bernilai nol tetapi pada titik ini kecepatan benda maksimum. Karena kecepatannya maksimum, maka ketika berada pada posisi setimbang, EK bernilai maksimum.

Benda masih terus bergerak ke kiri karena ketika berada pada posisi setimbang karena benda memiliki kecepatan yang bernilai maksimum. Ketika bergerak ke kiri, Gaya pemulih pegas menarik benda kembali ke posisi setimbang, sehingga benda berhenti sesaat pada simpangan sejauh -x dan bergerak kembali menuju posisi setimbang. Ketika benda berada pada simpangan sejauh -x, EK benda = 0 karena kecepatan benda = 0. pada posisi ini EP bernilai maksimum.

Pada penjelasan di atas, tampak bahwa ketika bergerak dari posisi setimbang menuju ke kiri sejauh x = -A (A = amplitudo/simpangan terjauh), kecepatan benda menjadi berkurang dan bernilai nol ketika benda tepat berada pada x = -A. Karena kecepatan benda berkurang, maka EK benda juga berkurang dan bernilai nol ketika benda berada pada x = -A. Akibat adanya gaya pemulih pegas yang menarik benda kembali ke kanan (menuju posisi setimbang), benda memperoleh kecepatan dan Energi Kinetiknya lagi. EK benda bernilai maksimum ketika benda tepat berada pada x = 0, karena laju gerak benda pada posisi tersebut bernilai maksimum. Proses perubahan energi antara EK dan EP berlangsung terus menerus selama benda bergerak bolak balik. Total EP dan EK selama benda bergetar besarnya tetap alias kekal bin konstan.

Pegas yang diletakan vertikal

Pada dasarnya osilasi alias getaran dari pegas yang digantungkan secara vertikal sama dengan getaran pegas yang diletakan horisontal. Bedanya, pegas yang digantungkan secara vertikal lebih panjang karena pengaruh gravitasi yang bekerja pada benda (gravitasi hanya bekerja pada arah vertikal, tidak pada arah horisontal). Mari kita tinjau lebih jauh Kekekalan Energi Mekanik pada pegas yang digantungkan secara vertikal…

Pada pegas yang kita letakan horisontal (mendatar), posisi benda disesuaikan dengan panjang pegas alami. Pegas akan meregang atau mengerut jika diberikan gaya luar (ditarik atau ditekan). Nah, pada pegas yang digantungkan vertikal, gravitasi bekerja pada benda bermassa yang dikaitkan pada ujung pegas. Akibatnya, walaupun tidak ditarik ke bawah, pegas dengan sendirinya meregang sejauh x0. Pada keadaan ini benda yang digantungkan pada pegas berada pada posisi setimbang.

Berdasarkan hukum II Newton, benda berada dalam keadaan setimbang jika gaya total = 0. Gaya yang bekerja pada benda yang digantung adalah gaya pegas (F0 = -kx0) yang arahnya ke atas dan gaya berat (w = mg) yang arahnya ke bawah. Total kedua gaya ini sama dengan nol. Mari kita analisis secara matematis…

Gurumuda tetap menggunakan lambang x agar anda bisa membandingkan dengan pegas yang diletakan horisontal. Dirimu dapat menggantikan x dengan y. Resultan gaya yang bekerja pada titik kesetimbangan = 0. Hal ini berarti benda diam alias tidak bergerak.

Jika kita meregangkan pegas (menarik pegas ke bawah) sejauh x, maka pada keadaan ini bekerja gaya pegas yang nilainya lebih besar dari pada gaya berat, sehingga benda tidak lagi berada pada keadaan setimbang (perhatikan gambar c di bawah).

Total kedua gaya ini tidak sama dengan nol karena terdapat pertambahan jarak sejauh x; sehingga gaya pegas bernilai lebih besar dari gaya berat. Ketika benda kita diamkan sesaat (belum dilepaskan), EP benda bernilai maksimum sedangkan EK = 0. EP maksimum karena benda berada pada simpangan sejauh x. EK = 0 karena benda masih diam.

Karena terdapat gaya pegas (gaya pemulih) yang berarah ke atas maka benda akan bergerak ke atas menuju titik setimbang. (sambil lihat gambar c di bawah ya).

Ketika mencapai titik setimbang, besar gaya total = 0, tetapi laju gerak benda bernilai maksimum (v maks). Pada posisi ini, EK bernilai maksimum, sedangkan EP = 0. EK maksimum karena v maks, sedangkan EP = 0, karena benda berada pada titik setimbang (x = 0).

Karena pada posisi setimbang kecepatan gerak benda maksimum, maka benda bergerak terus ke atas sejauh -x. Laju gerak benda perlahan-lahan menurun akibat adanya gaya berat yang menarik benda ke bawah, sedangkan besar gaya pemulih meningkat dan mencapai nilai maksimum pada jarak -x. Ketika benda berada pada simpangan sejauh -x, EP bernilai maksimum sedangkan EK = 0. Setelah mencapai jarak -x, gaya pemulih pegas menggerakan benda kembali lagi ke posisi setimbang (lihat gambar di bawah). Demikian seterusnya. Benda akan bergerak ke bawah dan ke atas secara periodik. Selama benda bergerak, selalu terjadi perubahan energi antara EP dan EK. Energi Mekanik bernilai tetap. Ketika benda berada pada titik kesetimbangan (x = 0), EM = EK. Ketika benda berada pada simpangan sejauh -x atau +x, EM = EP.

Energi Potensial sebuah pegas dengan konstanta gaya k yang teregang sejauh x dari kesetimbangannya dinyatakan dengan persamaan :

EP = ½ kx2

Energi Kinetik sebuah benda bermassa m yang bergerak dengan kelajuan v ialah :

EK = ½ mv2

Energi Total (Energi Mekanik) adalah jumlah Energi Potensial dan Energi Kinetik :

EM = EP + EK = ½ kx2 + ½ mv2

Ketika benda berada pada simpangan maksimum, x = A (A = Amplitudo), kecepatan benda = 0, sehingga Energi Mekanik benda :

EM = ½ kA2

Persamaan ini memberikan sifat umum penting yang dimiliki Gerak Harmonik Sederhana (GHS) : Energi total pada Gerak Harmonik Sederhana berbanding lurus dengan kuadrat amplitudo.

Referensi :

Giancoli, Douglas C., 2001, Fisika Jilid I (terjemahan), Jakarta : Penerbit Erlangga

Halliday dan Resnick, 1991, Fisika Jilid I, Terjemahan, Jakarta : Penerbit Erlangga

Tipler, P.A.,1998, Fisika untuk Sains dan Teknik-Jilid I (terjemahan), Jakarta : Penebit Erlangga

Young, Hugh D. & Freedman, Roger A., 2002, Fisika Universitas (terjemahan), Jakarta : Penerbit Erlangga

0 komentar:

Posting Komentar